If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+4x-320=0
a = 12; b = 4; c = -320;
Δ = b2-4ac
Δ = 42-4·12·(-320)
Δ = 15376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15376}=124$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-124}{2*12}=\frac{-128}{24} =-5+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+124}{2*12}=\frac{120}{24} =5 $
| 2a+2=3a+3 | | 4/x=3/x | | 4(x-x)/(x-x)=(x+x)(x-x)/(x-x) | | (3^2x-3)-(3^x-2)=24 | | x(x-x)/(x-x)=(x+x)(x-x)/(x-x) | | 7x-650=20x | | x^2-5x-138=0 | | 0.5^(1.5x)=0 | | 20x+650=7x | | (4x-1)^2-(4x+1)2=2x°2 | | 3,84+x=2,75 | | 5=x*0 | | X/2+3x/8=63 | | 2^2x-3-33.2^2+4=0 | | (x-1)*(-3)=-x+1 | | 5y+2y+5y+5y=180 | | 1,0475*1,0475x=2 | | 2s+12=3s-18 | | +38+x=16 | | +19+x=43 | | +16+x=-27 | | (9-3x)*(5+2x)+(x-3)*(5+x)=0 | | x6+3x3+4=0 | | +23+x=-23 | | 44-4z=4(z-5) | | 8v+2v=4v+10 | | 14a2+2a-20=0 | | 57.5=52.5+0.21(x-15) | | 30.4+4y=8y+20 | | 72+x=-13 | | 5n^2+n-500=0 | | 3w+0=9w+24 |